Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

catena-Poly[[cis-diaqua(2,2'-bipyridine)zinc(II)]-μ-5-sulfonatosalicylato]

Sai-Rong Fan, ${ }^{\text {a }}$ Long-Guan Zhu ${ }^{\text {a }}$

 and Hong-Ping Xiao ${ }^{\text {b }}$${ }^{\text {a }}$ Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China, and ${ }^{\mathbf{b}}$ School of Chemistry and Materials Science, Wenzhou Normal College, Wenzhou 325027, People's Republic of China

Correspondence e-mail: chezlg@zju.edu.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.030$
$w R$ factor $=0.083$
Data-to-parameter ratio $=13.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

In the title polymeric compound, $\left[\mathrm{Zn}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{6} \mathrm{~S}\right)\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right.$ $\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$], the octahedral coordination of the Zn atom comprises N -atom donors of $2,2^{\prime}$-bipyridine, O atoms of two water molecules, the carboxyl O atom of the 5-sulfosalicylate dianion and the sulfonyl O atom of a symmetry-related dianion. The water molecules with sulfonyl O atoms form hydrogen bonds between chains, giving rise to a twodimensional network.

Comment

Recently metal complexes of 5-sulfosalicylic acid $\left(\mathrm{H}_{3}\right.$ ssal $)$ have been extensively explored in our laboratory (Fan \& Zhu, 2005; Fan, Cai et al., 2005; Fan, Xiao \& Zhu, 2005; Fan et al., $2005 a, b, c, d)$. As part of our systematic studies on the H_{3} ssal metal complexes, the title zinc(II) compound, (I), was synthesized.

(I)

In the title compound, the $\mathrm{Zn}^{\mathrm{II}}$ atom adopts an octahedral geometry defined by two N -atom donors from one $2,2^{\prime}$-bipyridine ligand, two O atoms from one sulfonyl and one carboxyl group of two Hssal^{2-} ligands and two O atoms from two water molecules that are cis to each other (Fig. 1 and Table 1). The 5-sulfonatosalicylato dianion uses the carboxyl and the sulfonyl groups to bridge two $\mathrm{Zn}^{\mathrm{II}}$ atoms, producing a chain structure (Fig. 2). Moreover, the water molecules and uncoordinated carboxyl O atoms are engaged in hydrogen bonding only within each chain, while water molecules and sulfonyl O atoms form hydrogen bonds between chains, generating a two-dimensional hydrogen-bonding network (Fig. 3 and Table 2).

Experimental

2, 2^{\prime}-Bipyridine ($0.079 \mathrm{~g}, 0.51 \mathrm{mmol}$) dissolved in methanol (5 ml) was added slowly to an aqueous solution (15 ml) of zinc(II) acetate

Received 22 March 2005 Accepted 29 March 2005 Online 9 April 2005

Figure 1
An ORTEP view (Farrugia, 1997) of a fragment of (I). Displacement ellipsoids are drawn at the 40% probability level. [Symmetry code (i): $x+\frac{1}{2}, \frac{3}{2}-y, z+\frac{1}{2}$.]

A view of the one-dimensional chain for (I). Hydrogen bonds are shown as dashed lines and H atoms have been omitted for clarity.

Figure 3
A view of the two-dimensional hydrogen-bonding (dashed lines) network for (I). The 2,2'-bipyridine ligands and H atoms have been omitted for clarity.
dihydrate $(0.109 \mathrm{~g}, 0.5 \mathrm{mmol})$ and 5-sulfosalicylic acid dihydrate ($0.127 \mathrm{~g}, 0.5 \mathrm{mmol}$). After 1 d , colorless block-shaped crystals of (I) had grown and these were separated by filtration.

Crystal data

$\left[\mathrm{Zn}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{6} \mathrm{~S}\right)\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right.$]
$M_{r}=473.75$
Monoclinic, $P 2_{\mathrm{d}} / n$
$a=14.433$ (2) A
$b=7.6395$ (8) \AA
$c=18.089$ (2) \AA
$\beta=111.527$ (2) ${ }^{\circ}$
$V=1855.4(4) \AA^{3}$
$Z=4$
$D_{x}=1.696 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 6964
reflections
$\theta=2.3-28.2^{\circ}$
$\mu=1.49 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Block, colorless
$0.44 \times 0.34 \times 0.31 \mathrm{~mm}$

Data collection

Bruker SMART APEX area-
detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2002)
$T_{\text {min }}=0.561, T_{\text {max }}=0.636$
10467 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.083$
$S=1.09$
3847 reflections
277 parameters
H -atom parameters constrained

3847 independent reflections
3586 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.019$
$\theta_{\text {max }}=26.5^{\circ}$
$h=-18 \rightarrow 16$
$k=-7 \rightarrow 9$
$l=-19 \rightarrow 22$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0522 P)^{2}\right.$
$+0.5177 P]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=0.34 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.69 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters $\left({ }^{\circ},^{\circ}\right)$.

$\mathrm{Zn} 1-\mathrm{O} 1$	$2.187(1)$	$\mathrm{Zn} 1-\mathrm{N} 2$	$2.114(2)$
$\mathrm{Zn} 1-\mathrm{O} 5^{\mathrm{i}}$	$2.036(1)$	$\mathrm{Zn} 1-\mathrm{O} 1 W$	$2.034(1)$
$\mathrm{Zn} 1-\mathrm{N} 1$	$2.137(2)$	$\mathrm{Zn} 1-\mathrm{O} 2 W$	$2.179(2)$
$\mathrm{O} 1 W-\mathrm{Zn} 1-\mathrm{O}^{\mathrm{i}}$	$94.30(7)$	$\mathrm{N} 2-\mathrm{Zn} 1-\mathrm{O} 2 W$	$89.70(6)$
$\mathrm{O} 1 W-\mathrm{Zn} 1-\mathrm{N} 2$	$167.15(7)$	$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{O} 2 W$	$93.00(6)$
$\mathrm{O} 5^{\mathrm{i}}-\mathrm{Zn} 1-\mathrm{N} 2$	$97.81(7)$	$\mathrm{O} 1 W-\mathrm{Zn} 1-\mathrm{O} 1$	$86.40(5)$
$\mathrm{O} 1 W-\mathrm{Zn} 1-\mathrm{N} 1$	$90.82(7)$	$\mathrm{O} 5^{\mathrm{i}}-\mathrm{Zn} 1-\mathrm{O} 1$	$80.20(5)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{Zn} 1-\mathrm{N} 1$	$173.20(6)$	$\mathrm{N} 2-\mathrm{Zn} 1-\mathrm{O} 1$	$91.42(6)$
$\mathrm{N} 2-\mathrm{Zn} 1-\mathrm{N} 1$	$76.78(7)$	$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{O} 1$	$95.68(5)$
$\mathrm{O} 1 W-\mathrm{Zn} 1-\mathrm{O} 2 W$	$94.38(6)$	$\mathrm{O} 2 W-\mathrm{Zn} 1-\mathrm{O} 1$	$171.27(5)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{Zn} 1-\mathrm{O} 2 W$	$91.08(5)$		
Symmetry code: $(\mathrm{i}) \frac{1}{2}+x, \frac{3}{2}-y, \frac{1}{2}+z$			

Symmetry code: (i) $\frac{1}{2}+x, \frac{3}{2}-y, \frac{1}{2}+z$.

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O6-H6O \cdots O5	0.85 (1)	1.80 (2)	2.572 (2)	151 (2)
$\mathrm{O} 1 W-\mathrm{H} 1 W 1 \cdots \mathrm{O}^{\text {ii }}$	0.85 (3)	1.88 (3)	2.722 (2)	172 (3)
$\mathrm{O} 1 W-\mathrm{H} 2 W 1 \cdots \mathrm{O}^{3 i \mathrm{iii}}$	0.84 (1)	1.86 (1)	2.702 (2)	178 (3)
$\mathrm{O} 2 W-\mathrm{H} 1 W^{2} \cdots \mathrm{O} 2^{\text {iii }}$	0.84 (1)	2.00 (1)	2.820 (2)	164 (2)
$\mathrm{O} 2 W-\mathrm{H} 2 W 2 \cdots \mathrm{O} 4^{\mathrm{i}}$	0.85 (1)	1.90 (1)	2.714 (2)	159 (3)

Symmetry codes: (i) $\frac{1}{2}+x, \frac{3}{2}-y, \frac{1}{2}+z$; (ii) $\frac{3}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$; (iii) $x, 1+y, z$.
The aromatic H atoms were positioned geometrically and were refined in the riding-model approximation $[\mathrm{C}-\mathrm{H}=0.93 \AA$ and $\left.U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right]$. The water and hydroxyl H atoms were located in a difference Fourier map and were refined with a distance restraint of $\mathrm{O}-\mathrm{H}=0.85(1) \AA$ and with fixed isotropic displacement parameters of $U_{\text {iso }}(\mathrm{H})=0.05 \AA^{2}$.

metal-organic papers

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

We thank the National Natural Science Foundation of China (No. 50073019).

References

Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Fan, S.-R., Cai, G.-Q., Zhu, L.-G. \& Xiao, H.-P. (2005). Acta Cryst. C61, m177m179.
Fan, S.-R., Xiao, H.-P. \& Zhu, L.-G. (2005). Acta Cryst. E61, o253-o255.
Fan, S.-R. \& Zhu, L.-G. (2005). Acta Cryst. E61, m174-m176.
Fan, S.-R., Zhu, L.-G., Xiao, H.-P. \& Ng, S. W. (2005a). Acta Cryst. E61, m377m378.
Fan, S.-R., Zhu, L.-G., Xiao, H.-P. \& Ng, S. W. (2005b). Acta Cryst. E61, m435m436.
Fan, S.-R., Zhu, L.-G., Xiao, H.-P. \& Ng, S. W. (2005c). Acta Cryst. E61, m509m511.
Fan, S.-R., Zhu, L.-G., Xiao, H.-P. \& Ng, S. W. (2005d). Acta Cryst. E61, m563m565.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

