metal-organic papers

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Sai-Rong Fan,^a Long-Guan Zhu^a* and Hong-Ping Xiao^b

^aDepartment of Chemistry, Zheijang University, Hangzhou 310027, People's Republic of China, and ^bSchool of Chemistry and Materials Science, Wenzhou Normal College, Wenzhou 325027, People's Republic of China

Correspondence e-mail: chezlg@zju.edu.cn

Key indicators

Single-crystal X-ray study T = 295 KMean σ (C–C) = 0.003 Å R factor = 0.030 wR factor = 0.083 Data-to-parameter ratio = 13.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Printed in Great Britain - all rights reserved

catena-Poly[[cis-diaqua(2,2'-bipyridine)zinc(II)]- μ -5-sulfonatosalicylato]

In the title polymeric compound, $[Zn(C_7H_4O_6S)(C_{10}H_8N_2) (H_2O)_2$], the octahedral coordination of the Zn atom comprises N-atom donors of 2,2'-bipyridine, O atoms of two water molecules, the carboxyl O atom of the 5-sulfosalicylate dianion and the sulfonyl O atom of a symmetry-related dianion. The water molecules with sulfonyl O atoms form hydrogen bonds between chains, giving rise to a twodimensional network.

Received 22 March 2005 Accepted 29 March 2005 Online 9 April 2005

Comment

Recently metal complexes of 5-sulfosalicylic acid (Hassal) have been extensively explored in our laboratory (Fan & Zhu, 2005; Fan, Cai et al., 2005; Fan, Xiao & Zhu, 2005; Fan et al., 2005a,b,c,d). As part of our systematic studies on the H₃ssal metal complexes, the title zinc(II) compound, (I), was synthesized.

In the title compound, the Zn^{II} atom adopts an octahedral geometry defined by two N-atom donors from one 2,2'-bipyridine ligand, two O atoms from one sulfonyl and one carboxyl group of two Hssal²⁻ ligands and two O atoms from two water molecules that are cis to each other (Fig. 1 and Table 1). The 5-sulfonatosalicylato dianion uses the carboxyl and the sulfonyl groups to bridge two Zn^{II} atoms, producing a chain structure (Fig. 2). Moreover, the water molecules and uncoordinated carboxyl O atoms are engaged in hydrogen bonding only within each chain, while water molecules and sulfonyl O atoms form hydrogen bonds between chains, generating a two-dimensional hydrogen-bonding network (Fig. 3 and Table 2).

Experimental

2,2'-Bipyridine (0.079 g, 0.51 mmol) dissolved in methanol (5 ml) was © 2005 International Union of Crystallography added slowly to an aqueous solution (15 ml) of zinc(II) acetate

 $D_x = 1.696 \text{ Mg m}^{-3}$

Cell parameters from 6964

3847 independent reflections

 $w = 1/[\sigma^2(F_o^2) + (0.0522P)^2]$

where $P = (F_o^2 + 2F_c^2)/3$

+ 0.5177P]

 $(\Delta/\sigma)_{\rm max} = 0.001$

 $\Delta \rho_{\rm max} = 0.34 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.69 \ {\rm e} \ {\rm \AA}^{-3}$

3586 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

reflections

 $\mu = 1.49 \text{ mm}^{-1}$

T = 295 (2) K

 $R_{\rm int} = 0.019$

 $\theta_{\rm max} = 26.5^{\circ}$

 $k = -7 \rightarrow 9$

 $l = -19 \rightarrow 22$

 $h = -18 \rightarrow 16$

Block, colorless $0.44 \times 0.34 \times 0.31 \text{ mm}$

 $\theta = 2.3 - 28.2^{\circ}$

Figure 1

An *ORTEP* view (Farrugia, 1997) of a fragment of (I). Displacement ellipsoids are drawn at the 40% probability level. [Symmetry code (i): $x + \frac{1}{2}, \frac{3}{2} - y, z + \frac{1}{2}$.]

Figure 2

A view of the one-dimensional chain for (I). Hydrogen bonds are shown as dashed lines and H atoms have been omitted for clarity.

Figure 3

A view of the two-dimensional hydrogen-bonding (dashed lines) network for (I). The 2,2'-bipyridine ligands and H atoms have been omitted for clarity. dihydrate (0.109 g, 0.5 mmol) and 5-sulfosalicylic acid dihydrate (0.127 g, 0.5 mmol). After 1 d, colorless block-shaped crystals of (I) had grown and these were separated by filtration.

Crystal data

$$\begin{split} & [\text{Zn}(\text{C}_7\text{H}_4\text{O}_6\text{S})(\text{C}_{10}\text{H}_8\text{N}_2)(\text{H}_2\text{O})_2] \\ & M_r = 473.75 \\ & \text{Monoclinic, } P_{2_1}/n \\ & a = 14.433 \text{ (2) Å} \\ & b = 7.6395 \text{ (8) Å} \\ & c = 18.089 \text{ (2) Å} \\ & \beta = 111.527 \text{ (2)}^{\circ} \\ & V = 1855.4 \text{ (4) Å}^3 \\ & Z = 4 \end{split}$$

Data collection

Bruker SMART APEX areadetector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2002) $T_{\rm min} = 0.561, T_{\rm max} = 0.636$ 10467 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.030$ $wR(F^2) = 0.083$ S = 1.093847 reflections 277 parameters H-atom parameters constrained

Table 1

Selected geometric parameters (Å, °).

Zn1-O1	2.187 (1)	Zn1-N2	2.114 (2)
Zn1-O5 ⁱ	2.036(1)	Zn1-O1W	2.034 (1)
Zn1-N1	2.137 (2)	Zn1-O2W	2.179 (2)
$O1W$ Z_{p1} $O5^{i}$	94 30 (7)	N2 $7n1$ $O2W$	89.70 (6)
O1W = Zn1 = O3 O1W = Zn1 = N2	167.15 (7)	$N_2 = Zn_1 = O_2 W$ $N_1 = Zn_1 = O_2 W$	93.00 (6)
O5 ⁱ -Zn1-N2	97.81 (7)	O1W-Zn1-O1	86.40 (5)
O1W-Zn1-N1	90.82 (7)	O5 ⁱ -Zn1-O1	80.20 (5)
O5 ⁱ -Zn1-N1	173.20 (6)	N2-Zn1-O1	91.42 (6)
N2-Zn1-N1	76.78 (7)	N1-Zn1-O1	95.68 (5)
O1W-Zn1-O2W	94.38 (6)	O2W-Zn1-O1	171.27 (5)
$O5^i - Zn1 - O2W$	91.08 (5)		

Symmetry code: (i) $\frac{1}{2} + x, \frac{3}{2} - y, \frac{1}{2} + z$.

Table 2		
Hydrogen-bonding geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O6−H6O···O5	0.85(1)	1.80 (2)	2.572 (2)	151 (2)
$O1W - H1W1 \cdots O3^{ii}$	0.85 (3)	1.88 (3)	2.722 (2)	172 (3)
$O1W - H2W1 \cdots O3^{iii}$	0.84(1)	1.86 (1)	2.702 (2)	178 (3)
$O2W - H1W2 \cdot \cdot \cdot O2^{iii}$	0.84(1)	2.00(1)	2.820(2)	164 (2)
$O2W - H2W2 \cdots O4^{i}$	0.85 (1)	1.90 (1)	2.714 (2)	159 (3)

Symmetry codes: (i) $\frac{1}{2} + x, \frac{3}{2} - y, \frac{1}{2} + z$; (ii) $\frac{3}{2} - x, \frac{1}{2} + y, \frac{1}{2} - z$; (iii) x, 1 + y, z.

The aromatic H atoms were positioned geometrically and were refined in the riding-model approximation $[C-H = 0.93 \text{ Å} \text{ and } U_{iso}(H) = 1.2U_{eq}(C)]$. The water and hydroxyl H atoms were located in a difference Fourier map and were refined with a distance restraint of O-H = 0.85 (1) Å and with fixed isotropic displacement parameters of $U_{iso}(H) = 0.05 \text{ Å}^2$.

metal-organic papers

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

We thank the National Natural Science Foundation of China (No. 50073019).

References

Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

- Fan, S.-R., Cai, G.-Q., Zhu, L.-G. & Xiao, H.-P. (2005). Acta Cryst. C61, m177m179.
- Fan, S.-R., Xiao, H.-P. & Zhu, L.-G. (2005). Acta Cryst. E61, o253-o255.
- Fan, S.-R. & Zhu, L.-G. (2005). Acta Cryst. E61, m174-m176.
- Fan, S.-R., Zhu, L.-G., Xiao, H.-P. & Ng, S. W. (2005*a*). Acta Cryst. E**61**, m377–m378.
- Fan, S.-R., Zhu, L.-G., Xiao, H.-P. & Ng, S. W. (2005*b*). *Acta Cryst.* E**61**, m435–m436.
- Fan, S.-R., Zhu, L.-G., Xiao, H.-P. & Ng, S. W. (2005c). Acta Cryst. E**61**, m509–m511.
- Fan, S.-R., Zhu, L.-G., Xiao, H.-P. & Ng, S. W. (2005d). Acta Cryst. E61, m563– m565.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.